
SCOPE :

This specification applies to the current type Radial Leaded Inductor for MCD-0912-SERIES

PRODUCT INDENTIFICATION

- ① Product Code
- ② Dimensions Code
- ③ Inductance Code
- ④ Tolerance Code

(1) SHAPES AND DIMENSIONS

A: 11.0 Max.	mm
B: 12.5 Max.	mm
C: 15±2.0	mm
D: 5.0±0.5	mm
E: φ0.8±0.1	mm
F: 2.5 Max.	mm

(2) ELECTRICAL SPECIFICATIONS SEE TABLE 1

TEST INSTRUMENTS

- L : HP 4284A PRECISION LCR METER (or equivalent)
- RDC : CHROMA MODEL 16502 MILLIOHMMETER (or equivalent)

(3) CHARACTERISTICS

- (3)-1 Ambient temperature +60 $^\circ\!\!\mathbb{C}$ Max.
- (3)-2 Operate temperature range -40° C \sim $+125^{\circ}$ C (Including self temp. rise)
- (3)-3 Storage temperature range $-40^\circ C \sim +125^\circ C$

TABLE 1

MAGLAYERS	Inductance	Percent	Test	Resistance	Rated D	C Current
PT/NO.	L(µH)	Tolerance	Frequency	RDC(Ω)Max.	IDC1(A)	IDC2(A)
MCD-0912-220 -RU	22	K,M	100kHz/0.25V	50m	4.50	3.50
MCD-0912-101 -RU	100	K,M	100kHz/0.25V	0.16	1.70	1.80
MCD-0912-121 -RU	120	K,M	100kHz/0.25V	0.20	1.50	1.70
MCD-0912-181 -RU	180	K,M	100kHz/0.25V	0.31	1.30	1.40
MCD-0912-221 -RU	220	K,M	100kHz/0.25V	0.34	1.10	1.15
MCD-0912-271 -RU	270	K,M	100kHz/0.25V	0.40	1.00	1.12
MCD-0912-301 -RU	300	K,M	100kHz/0.25V	0.46	0.96	1.10
MCD-0912-331 -RU	330	K,M	100kHz/0.25V	0.52	0.93	1.00
MCD-0912-391 -RU	390	K,M	100kHz/0.25V	0.65	0.86	0.90
MCD-0912-471 -RU	470	K,M	100kHz/0.25V	0.71	0.78	0.80
MCD-0912-501 -RU	500	K,M	100kHz/0.25V	0.80	0.75	0.78
MCD-0912-681 -RU	680	K,M	100kHz/0.25V	1.10	0.65	0.70
MCD-0912-821 -RU	820	K,M	100kHz/0.25V	1.30	0.59	0.65
MCD-0912-102 -RU	1000	K,M	100kHz/0.25V	1.70	0.53	0.60

※ 1. □ Specify the inductance tolerance, K(±10%), M(±20%)

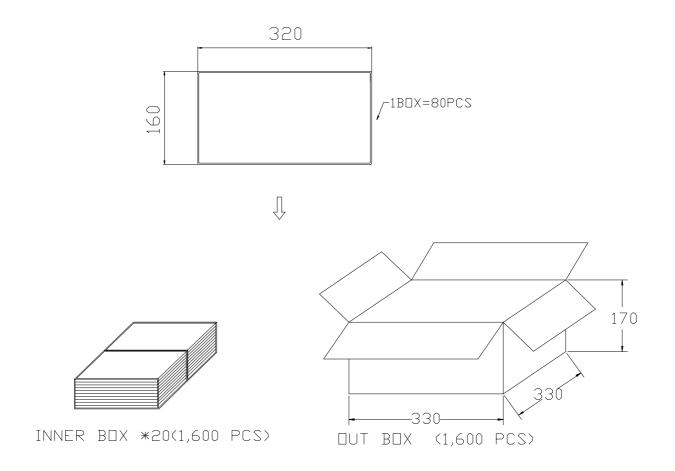
% 2. IDC1 : Based on inductance change (\triangle L/Lo: drop 10%Max.) @ ambient temp. 25 $^{\circ}$ C

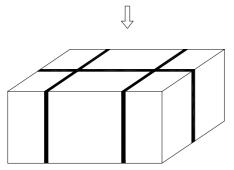
IDC2 : Based on temperature rise ($\triangle T$: 40°C TYP.)

Rated DC Current : The less value which is IDC1 or IDC2.

(4) RELIABILITY TEST METHOD

MECHANICAL


NO.	ITEMS	SPECIFICATIONS	CONDITIONS
1	Solderability test	More than 90% of the termnial electrode should be covered with solder.	Dipping: 245 ± 5 $^{\circ}$ C, 3 ± 1 seconds
2	lead tensile	1.0 Kg MIN.	The lead of product is pulled with a load of
	strength test		1.0kg mininum until lead breakdown. The tensile
			force shall be recorded.
3	Vibration test	∆L/L≦±7%	The product is fixed ento the vibration with
		Visual:OK	amplitude of 1.52m/m at a frequency of 10 \sim 55Hz
			sweeping for Imin. The vibration is done at X,Y,
			Z direction respectively for 2 houes, totally 6
			hours.
4	Soldering heat	Visual:OK	The leads of product are dipped into a solder pot
	resistance test	Circuit:OK	of 260±5 $^{\circ}$ C for a duration of 10±1sec. Nothing
			particular on visual and open circuitry as a
			result of ore testing.


ENVIRONMENTAL

NO.	ITEMS	SPECIFICATIONS	CONDITIONS
1	Humidity	∆L/L≦±5%	The product is placed in a chamber of $40\pm2^\circ\!\!\mathbb{C}$,
	endurance		90 \sim 95%RH for 96 hours. Measurement is done
	test		after the reaovery of 4 \sim 24 hours.
2	High temp	∆L/L≦±5%	The product is placed in a chamber of $80\pm 2^\circ C$,
	endurance test		for 72 hours. Measurement is done after recovery
			of 4 \sim 24 hours.
3	Low temp test	∆L/L≦±5%	The product is placed in a chamber of -40 $\pm 2^{\circ}$,
			for 96 hours. Measurement is done after
			recovery of $4 \sim 24$ hours.
4	Thermal shock	L/L≦±5%	The specimens are placed in a chamber and the
	test		temp is then lowered to -20 \pm 2 $^\circ\!\mathrm{C}$ for one hour.
			The temp will raised to +80 $\pm 2^{\circ}$ C for one hour.
			This constitues one cycle. Ten cycles of such
			testing shall be completed. Measurement is made
			after recovery for 4 \sim 24 hours from the
			completion of testing.

(5) PACKAGE SPECIFICATION (mm)

